Caracterização numérica e experimental de estruturas CSRR em antenas de microfita

Álef Huan Pereira Souto

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

http://lattes.cnpq.br/6700825485482203

Jefferson Costa e Silva

https://orcid.org/0000-0002-5857-6112 Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

http://lattes.cnpq.br/7399512856151138

Marília Gabriella Alves Rodrigues Santos

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

http://lattes.cnpq.br/4703851355763441

Alfredo Gomes Neto

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

http://lattes.cnpq.br/1403715441701958

Resumo

This work aims to perform the numerical and experimental characterization of CSRR (Complementary Split Ring Resonator) structures in the ground plane of microstrip antennas, for the use in 4G/LTE wireless systems in the 2.5 GHz band. Two geometries for the radiating elements of the antennas were used, the circular and the rectangular ones. Some initial equations were used to design the CSRR structures, followed by a numerical optimization process. This way, numerical and experimental analyzes of the changes in antennas characteristics were carried out, mainly in resonance frequency, bandwidth and radiation pattern. The simulated results were obtained using the commercial software ANSYS, which uses the Moment Method (MoM). The simulated and measured results of the antennas with the CSRR structures printed on their ground plane were compared with those obtained by circular and rectangular patch antennas with a conventional ground plane, we could observe a reduction in their resonant frequency, enabling the miniaturization process.

Palavras-chave


Microstrip. CSRR. 4G/LTE. Simulations. Measurements.


Texto completo:

Referências


BALANIS, C. A. Antenna theory: analysis and design, 2ª ed., New York (United States): Wiley, 1997.

CALOZ, C.; ITOH, T. Electromagnetic metamaterials: transmission line theory and microwave applications. New Jersey (United States): Wiley, 2006.

CHEN, W. S.; WU, C. K.; WONG, K, L. Novel compact circularly polarized square microstrip antenna. IEEE Transactions on Antennas and Propagation, v. 49, n. 3, p. 340-342, 2001.

CROQ, F.; PAPIERNICK, A. Large bandwidth aperture-coupled microstrip antenna. Electronics Letters, v. 26, n. 16, p. 1293-1294, 1990.

PUSHPAKARAN, S. et al.. A metamaterial absorber based high gain directional dipole antenna. International Journal of Microwave and Wireless Technologies, v. 10, n. 4, p. 430-436, 2018.

DESCHAMPS, G.; SICHAK W. Microstrip Microwave Antennas, Proceedings of the Third Symposium on the USAF Antenna Research and Development Program, p. 18-22, 1953.

DURÁN-SINDREU, M. et al. Electrically small resonators for planar metamaterial. Applied Sciences, v. 2, n. 2, p. 375-395, 2012.

ISLAM, M. M. et al. A Miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 2015, v. 8, n. 2, p. 392-407, 2015.

LI, W.; VALENTINE, J. Metamaterial perfect absorber based hot electron photodetection. Nano Letters, v. 14, p. 3510-3514, 2014.

LUNA, D. R. et al. Microstrip patch antennas with metamaterial inspired substrates and superstrates. In: 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro (Brazil), Proceedings..., 2013.

MARQUES, R.; MEDINA, F.; RAFII-EL-IDRISSI, R. Role of bianisotropy in negative permeability and left handed metamaterials. Physical Review B, v. 65, p. 144440-144446, 2002.

MARQUES, R. et al. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - theory and experiments. IEEE Transactions on Antennas and Propagation, v. 51, n. 10, p. 2572-2581, 2003.

MINK, J. W. Circular ring microstrip antenna elements. In: 1980 Antennas and Propagation Society International Symposium, Quebec (Canada), Proceedings..., v. 18, p. 605-608, 1980.

MUNSON, R. Microstrip phased array antennas. 1973 EIC 11th Electrical Insulation Conference, Proceedings…, p. 281-283, 1973.

PENDRY, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, v. 47, n. 11, p. 2075-2084, 1999.

PUSHPAKARAN, S. V. et al. A metamaterial absorber based high gain directional dipole antenna. International Journal of Microwave and Wireless Technologies, v. 10, n. 4, p. 430-436, 2018.

RAJO-IGLESIAS, E.; QUEVEDO-TERUEL, O.; INCLAN-SANCHEZ, L. Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multiplayer dielectric substrate. IEEE Transactions on Antennas and Propagation, v. 56, n. 6, p. 1648-1655, 2008.

SHAFI, M.; JHA, A. K.; AKHTAR, M. J. Dual band RF sensor for testing of magnetic properties of materials using meandered line SRR. Sensors and Actuators A: Physical, v. 272, p. 170-177, 2018.

SHARMA, S. K.; CHAUDHARY, R. K. Dual-band metamaterial-inspired antenna for mobile applications. Microwave and Optical Technology Letters, v. 57, n. 6, p. 1444-1447, 2015.

VRBA, D. et al. Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments. PIER Progress In Electromagnetics Research, v. 156, p. 1–12, 2016.


DOI: http://dx.doi.org/10.18265/1517-03062015v1n45p188-199

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 130

Total de downloads do artigo: 83